

Institute of Energy and Mechanical Engineering Department of "Technological machines and equipment"

EDUCATIONAL PROGRAM 6B07115 – Technological machines and equipment (by industry)

Code and classification of the field of education:	6B07 – « Engineering, manufacturing and civil engineering»
Code and classification of training directions:	6B071 – «Engineering and engineering trades»
Group of educational programs:	B064 – «Mechanics and metal working»
Level based on NQF:	Level 6 – Higher education and practical experience
Level based on IQF:	Level 6 – a wide range of special (theoretical and practical) knowledge (including innovative ones). Independent search, analysis and evaluation
Study period:	4 years
Amount of credits:	240

Almaty 2023

Educational program 6B07115 – Technological machines and equipment (by industry) was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes # <u>dated</u> «<u>M</u>» <u>11</u> 20<u>2</u>.

Reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes # <u>3</u> dated «<u>14</u> » <u>11</u> 20<u>22</u>.

Educational program 6B07115 – Technological machines and equipment (by industry) was developed by Academic committee based on direction « Engineering and Engineering »

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of A	cademic Committee:			•
Yelemessov Kassym	Candidate of Technical Sciences, Associate Professor	Director of the Institute of Energy and Mechanical Engineering	KazNRTU named after K.I. Satpaeva	6001
Teaching staff:		•		
Eskulov Serik ¥µa∽	Candidate of Technical Sciences, Associate Professor	Head of the department "Technological machines and equipment"	KazNRTU named after K.I. Satpaeva	ff
Myrzakhmetov Beibit	Candidate of Technical Sciences, Associate Professor	Professor	KazNRTU named after K.I. Satpaeva (Ainf
Bortebayev Saiyn	Candidate of Technical Sciences, Associate Professor	Associate Professor	KazNRTU named after K.I. Satpaeva	Å
Employers:				
Kanatbayev Maksat	Master MBA	CEO	JSC "Almaty plant of heavy engineering"	2
Students				
Asankhanov Nurdaulet		3rd year student	KazNRTU named after K.I. Satpaeva	In

Table of contents

	List of abbreviations and designations	4
1.	Description of educational program	5
2.	Purpose and objectives of educational program	6
3.	Requirements for the evaluation of educational program learning	6
	outcomes	
4.	Passport of educational program	9
4.1.	General information	9
4.2.	Relationship between the achievability of the formed learning	12
	outcomes according to educational program and academic	
	disciplines	
5.	Curriculum of educational program	37

List of abbreviations and designations

NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY

named after K.I. SATBAYEV» – NCJS KazNRTU named after K. I. Satbayev; SOSE – State obligatory standard of education of the Republic of Kazakhstan; EP – educational program;

IWS – independent work of a student (student, undergraduate, doctoral student);

IWST – independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

- WC working curriculum;
- CED catalog of elective disciplines;
- UC university component;
- CC component of choice;
- NQF National Qualifications Framework; S
- QF Sectoral Qualifications Framework;
- LO learning outcomes;
- KC key competencies

1. Description of educational program

The field of professional activity of the Bachelor of the educational program "Operational and service Engineering" includes:

- sections of science and technology containing a set of tools, techniques, methods and methods of human activity aimed at creating competitive engineering products and based on the use of modern methods and means of design, calculation, mathematical, physical and computer modeling;

- organization and execution of works on creation, installation, commissioning, maintenance, operation, diagnostics and repair of technological machines and equipment, development of technological processes for the production of parts and assemblies.

The objects of the bachelor 's professional activity are:

- technological machines and equipment of various complexes;

- technological equipment and means of mechanization and automation of technological processes;

- production technological processes, their development and development of new technologies;

- installation and repair of technological machines and equipment;

- means of information, metrological, diagnostic and management support of technological systems to achieve the quality of manufactured products;

- means of testing and quality control of technological machines and equipment;

- technological processes of metal structures assembly;

- welding equipment and power supplies, assembly and welding devices;

- regulatory and technical documentation, standardization and certification systems, methods and means of testing and quality control of products.

The types of professional activity are:

- experimental research;

- design and analytical;

- production and technological;

- service and operational;

- installation and commissioning;

- organizational and managerial.

The subjects of the bachelor's professional activity are:

- technological machines and equipment; energy equipment;

- machine drive systems;

- motion control systems;

- operator's life support systems;

- structural and operational materials;

- equipment for manufacturing, testing and disposal of technological machines;

- equipment for maintenance and repair of technological machines;

- control and measuring devices for the manufacture and operation of machines;

- equipment for automating the working processes of machines;
- equipment for designing machines

2. Purpose and objectives of educational program

Purpose of EP: Technological machines and equipment (by industry) is to provide comprehensive and high-quality training of competitive, highly qualified specialists ready to solve practical and theoretical tasks of professional activity in modern conditions based on the development of skills and abilities necessary for a future specialist

Tasks of EP:

- study of a cycle of general education disciplines to provide social and humanitarian education based on the laws of socio-economic development of society, history, modern information technologies, the state language, foreign and Russian languages;

- study of the cycle of basic disciplines providing knowledge of natural, general technical and economic disciplines as the basis of vocational education;

- the cycle of the main disciplines is aimed at studying the main theoretical aspects of technological machines, theoretical and practical methods, areas of human activity based on the creation of competitive technological machines and modern methods and means of human design, mathematical, physical and computer modeling of technological processes;

- study of disciplines that form the skills of planning and organizing research work, designing technologies and devices;

- familiarity with the technologies and equipment of enterprises at different stages of practical training;

- mastering the skills and abilities of laboratory research, technological calculations, selection and design of equipment using modern computer technologies and programs

3. Requirements for evaluating the educational program learning outcomes

The volume of the bachelor's degree program is 240 credits, regardless of the form of study, the educational technologies used, the implementation of the bachelor's program using the online form, the implementation of the bachelor's program according to an individual curriculum, including accelerated learning.

Descriptors of the level and scope of knowledge, skills, skills and competencies

A – knowledge and understanding:

A1 - The ability to logically represent the acquired knowledge and understanding of systemic relationships within disciplines, as well as interdisciplinary relations in modern science.

A2 - Knowledge of approaches and methods of critical analysis, the ability to use them practically in relation to various forms and processes of production.

A3 - to carry out basic calculations of the main parameters of technological machines, to justify their choice depending on production levels.

C – application of knowledge and understanding

B1 - Independent development and promotion of various options for solving professional tasks using theoretical and practical knowledge

B2 - to put forward hypotheses for the acquisition of new knowledge necessary for daily professional activity and continuing education

B3 - based on basic knowledge, be able to adequately navigate in various situations

C – formation of judgments

C1 - on the basis of knowledge about economic laws, the formation of hypotheses, forecasting and planning of economic activity of the enterprise.

C2 - be able to work in a team, correctly defend your point of view, and offer new solutions.

C3 - skills of daily acquisition of new knowledge necessary for professional activity.

D – personal abilities

D1 - compliance with the norms of business ethics, possession of ethical and moral standards of behavior.

D2 - the ability to find a compromise, correlate your opinion with the opinion of the team

D3 - to know social and ethical values based on public opinion, traditions, customs, social norms and be able to navigate them in their professional activities.

Competencies upon completion of training

	General cultural competencies (GCC)
GCC 1	Ability to communicate orally and in writing in the state, Russian and foreign languages to solve problems of interpersonal and intercultural interaction
GCC 2	Understanding and practical use of healthy lifestyle norms, including prevention issues, the ability to use physical culture to optimize performance
GCC 3	The ability to analyze the main stages and patterns of the historical development of society for the formation of a civic position
GCC 4	The ability to use the basics of philosophical knowledge to form a worldview position
GCC 5	The ability to critically use the methods of modern science in practice
GCC 6	Awareness of the need and acquisition of the ability to independently study and improve their qualifications throughout their working life
GCC 7	Knowledge and understanding of professional ethical standards, proficiency in professional communication techniques
GCC 8	Ability to work in a team, tolerantly perceiving social, ethnic, confessional and cultural differences
GCC 9	The ability to use the basics of economic knowledge in various fields of activity
	General professional competencies (GPC)
GPC-1	The ability to acquire new knowledge with a high degree of independence using modern educational and information technologies
GPC-2	Possession of computer skills sufficient for professional activity with basic programming

GPC-3	Knowledge of the basic methods, methods and means of obtaining, storing, processing information, the ability to use modern technical means and information technologies using traditional information carriers, distributed knowledge bases, as well as information in global computer networks to solve communication problems
GPC-4	Understanding the essence and significance of information in the development of modern society, the ability to receive and process information from various sources, the willingness to interpret, structure and formalize information in a form accessible to others
GPC-5	Ability to solve standard tasks of professional activity on the basis of information and bibliographic culture with the use of information and communication technologies and taking into account the basic requirements of information security
	Professional competencies (PC)
PC1	The ability to systematically study scientific and technical information, domestic and foreign experience in the relevant training profile
PC 2	The ability to take part in the preparation of scientific reports on the completed task and implement the results of research and development in the field of technological machines and equipment
PC 3	Ability to participate in work on innovative projects using basic research methods
PC 4	Ability to model technical objects and technological processes using standard packages and computer- aided design tools, willingness to conduct experiments according to specified methods with processing and analysis of results
PC 5	Knowledge of approaches and methods of critical analysis, the ability to use them practically in relation to various forms and processes of technological processes
PC 6	The ability to independently master new equipment, technological and technical documentation, make adjustments to it in relation to operating conditions
PC 7	The ability to take part in the calculation and design of parts and assemblies of technological machines in accordance with the technical specifications and the use of standard design automation tools
PC 8	The ability to conduct patent research in order to ensure the patent purity of new design solutions and their patentability with the determination of indicators of the technical level of the designed products
PC 9	The ability to investigate and optimize the operating modes of technological machines during their operation
PC 10	The ability to conduct a preliminary feasibility study of design solutions
PC 11	The ability to design the technical equipment of workplaces with the placement of technological equipment, the ability to master the equipment being introduced
PC 12	The ability to participate in the work on fine-tuning and mastering of technological processes during the preparation of production of new products, to check the quality of installation and commissioning during testing and commissioning of new samples of products, assemblies and parts of manufactured products
PC 13	Ability to check the technical condition and residual life of technological equipment, organize preventive inspection and maintenance of technological machines and equipment
PC 14	The ability to carry out measures for the prevention of occupational injuries and occupational diseases, to monitor compliance with the environmental safety of the work carried out
PC 15	Ability to choose basic and auxiliary materials, methods of implementation of technological processes, to apply progressive methods of operation of technological equipment
PC 16	Master the basic methods of calculating the parameters of technological equipment, the methodology of their selection according to reference books and catalogs.

4. Passport of educational program

4.1. General information

N⁰	Field name	Comments
1		6B07 – « Engineering, manufacturing and civil
		engineering»
2	Code and classification of training	6B071 – «Engineering and engineering trades»
	directions	
3	Educational program group	B064 – «Mechanics and metal working»
4	Educational program name	"Technological machines and equipment (by
		industry)"
5	Short description of educational	Educational program "Technological machines and
	program	equipment (by industry)" in the following industries:
		- metallurgical machinery and equipment;
		- mining machinery and equipment;
		- machinery and equipment of the oil and gas industry;
6	Purpose of EP	The purpose of the educational program is to train
		highly qualified and competitive specialists competent
		in the field of monitoring, operation and maintenance
		of technological equipment of the mining and
		metallurgical and oil and gas industries. The
		development of students' personal qualities, the
		formation of general cultural and professional
-		competencies
7		updated
8	The level based on NQF	6
9	The level based on IQF	6
10	Distinctive features of EP	
	List of competencies of educational	-
	program	QC Basic literacy in natural sciences
		QC 3.General engineering competencies QC 4. Professional competencies
		QC 5. Engineering and computer competencies
		QC 6.Engineering and working competencies
		QC 7. Socio-economic competencies
		QC 8. Special professional competencies
12	Learning outcomes of educational	RO1: Ready to use ethical and legal norms regulating
	program	the relationship of a person to a person, society, and
		the environment. He is able to practically apply the
		basic laws and forms of regulation of social behavior,
		human and civil rights and freedoms in the
		development of social projects, demonstrating respect
		for people, tolerance to another culture, willingness to
		maintain partnerships
		PO2: Capable of purposeful application of basic
		knowledge in the field of mathematical, natural,
		humanitarian and economic sciences in professional
		activity
		RO3: Is able to choose the main and auxiliary
		materials and methods of implementation of the main
		technological processes and apply progressive
		methods of operation of technological equipment

	RO4: Knows the basic methods, methods and means
	of obtaining, storing, processing information, is able
	to use modern technical means and information
	technologies using traditional information carriers,
	distributed knowledge bases, as well as information in
	global computer networks to solve communication
	problems
	RO5: Is able to participate in installation and
	commissioning during testing and commissioning of new technological equipment. He is able to check the technical condition and residual life of technological
	and welding equipment, organize preventive inspection and maintenance of equipment using
	diagnostic devices, process measurement results
	RO6: Is able to apply modern methods for the
	development of low-waste, energy-saving technologies that ensure the safety of human life and
	their protection from possible consequences of
	accidents, catastrophes and natural disasters, is able to
	apply methods of rational use of raw materials, energy
	and other types of resources
	RO7: Ready to carry out standardization work,
	technical preparation for certification of technical
	means and equipment, organize metrological support
	of technological processes using standard quality
	control methods
	RO8: Is able to apply standard calculation methods in
	the design of parts and assemblies of technological
	machines and welded structures. Is able to take part in
	the calculation and design of parts and assemblies of
	technological equipment and welded structures in
	accordance with technical specifications and the use of
	standard design automation tools
	RO9: Is able to develop working design and technical
	documentation, execute completed design work with
	verification of compliance of developed projects and
	technical documentation with standards, specifications
	and other regulatory documents
	RO10: Is able to make applications for equipment and
	spare parts, prepare technical documentation for
	equipment repairs, analyze and monitor the technical
	condition of machines, as well as to make management
	decisions based on their results
	RO11: Has knowledge and skills in the field of
	dynamics, reliability and technical diagnostics of
	technological machines of main and auxiliary
	production
	RO12: Has knowledge in the field of operation and
	repair of lifting and transport, water-gas-oil pumping
	machines for integrated management and monitoring
	of industrial production
	RO13: Has knowledge in the field of industrial
· ·	

		enterprises. He is able to manage departments of industry-specific industries. He is able to combine knowledge in the field of engineering and technologies of industrial production RO14 Performs strength calculations and calculations of machine structures, is able to design, adjust, repair equipment of various types, solve problems of efficient operation of mechanical equipment, as well as operate any complex of equipment in the technological processes of mining, metallurgical and oil and gas industries
13	Education form	full-time
14	Period of training	4 years
15	Amount of credits	240
16	Languages of instruction	english
17	Academic degree awarded	Bachelor of Engineering and Technology
18	Developer(s) and authors	 Director of the Institute of Energy and Mechanical Engineering, Yelemessov Kassym Head of the department "Technological machines and equipment", Eskulov Serik Professor, Myrzakhmetov Beibit Associate Professor, Bortebayev Saiyn Master MBA, Kanatbayev Maksat Teacher, Tagauova Raikhan

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

N₂	Discipline name	Short description of discipline	Amount								s)		
			of credits	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
		Cycle of general		-	lines								
			ed compo	nent							_		
1	Foreign language	English is a discipline of the general	5	v									
		education cycle. After determining the											
		level (according to the results of											
		diagnostic testing or IELTS results),											
		students are divided into groups and											
		disciplines. The name of the discipline											
		corresponds to the level of English											
		proficiency. During the transition from											
		level to level, the prerequisites and											
		post-prerequisites of the discipline are											
		observed											
2	Kazakh (Russian) language	The socio-political, socio-cultural spheres	5	v									
		of communication and functional styles of											
		the modern Kazakh (Russian) language are											
		considered. The course highlights the											
		specifics of scientific style in order to develop and activate professional and											
		communicative skills and abilities of											
		students, allows students to practically											
		master the basics of scientific style and											
		develops the ability to perform structural											
		and semantic analysis of the text											
3	Information and	Required component. The task of studying	5	v									
	communication technologies	the discipline is to acquire theoretical											
	(in English)	knowledge about information processes,											
		about new information technologies, local											
		and global computer networks, methods of											
		information protection; to acquire skills in											
		using text editors and tabular processors; to											
		create databases and various categories of											

		application programs	Ι		[1	1		
4			-		 		<u> </u>	 		
4	Modern history of Kazakhst	an The course studies historical events,	5	v						
		phenomena, facts, processes that took								
		place on the territory of Kazakhstan from								
		ancient times to the present day. The								
		sections of the discipline include: the								
		steppe empire of the Turks; early feudal								
		states on the territory of Kazakhstan;								
		Kazakhstan during the Mongol conquest								
		(XIII century), medieval states in the XIV-								
		XV centuries. The epoch of the Kazakh								
		Khanate XV-XVIII centuries. Kazakhstan								
		as part of the Russian Empire, Kazakhstan								
		during the Great Patriotic War, during the								
		formation of independence and at the								
		present stage								
5	Philosophy	Philosophy forms and develops critical and	5	v						
		creative thinking, worldview and culture,								
		provides knowledge about the most								
		general and fundamental problems of								
		existence and gives them a methodology								
		for solving various theoretical and								
		practical issues. Philosophy expands the								
		horizon of vision of the modern world,								
		forms citizenship and patriotism, promotes								
		self-esteem, awareness of the value of								
		human existence. It teaches you to think								
		and act correctly, develops practical and								
		cognitive skills, helps you to search and								
		find ways and ways of living in harmony								
		with yourself, society, and the world								
		around you								
6	Module of socio-political	The study of the course contributes to the	3	v						
Ŭ	knowledge (sociology,	formation of students' theoretical	-	ľ						
	political science)	knowledge about society as an integral								
	pontical science)	system, provides the political aspect of								
		training a highly qualified specialist on the								
		basis of modern world and domestic								
		political thought. The discipline is								
		designed to improve the quality of both								
		general humanitarian and professional								

			1			1			 	
		training of students. Knowledge in the								
		field of sociology and political science is								
		necessary to understand political								
		processes, to form a political culture, to								
		develop a personal position and a clearer								
		understanding of the measure of one's								
		responsibility								
7	Module of socio-political	The module of socio-political knowledge	5	v						
	knowledge (cultural studies,	(cultural studies, psychology) is designed								
	psychology)	to familiarize students with the cultural								
		achievements of mankind, to understand								
		and assimilate the basic forms and								
		universal patterns of formation and								
		development of culture. During the course								
		of cultural studies, general problems of the								
		theory of culture, leading cultural								
		concepts, universal patterns and								
		mechanisms of formation and development								
		of culture, the main historical stages of the								
		formation and development of Kazakh								
		culture are considered. The regularities of								
		the emergence, development and								
		functioning of mental processes, states,								
		properties of a person engaged in a								
		particular activity, the regularities of the								
		development and functioning of the psyche								
		as a special form of vital activity are also								
		studied								
		Cycle of general	educatio	n discin	lines					
		Universi		_						
0	Fundamentals of anti-	The discipline studies the essence, causes,			v	1	Г			
0		causes of sustainable development of	5		v					
	corruption culture	corruption from both historical and modern								
		points of view. Examines the prerequisites								
		and impacts for the development of an								
		anti-corruption culture. Studies the								
		development of anti-corruption on the								
		basis of social, economic, legal, cultural,								
		moral and ethical norms. Studies the								
		problems of the formation of an anti-								
		corruption culture based on the								

				-						
		relationship with various types of social								
		relations and various manifestations.								
		Situations of conflict of interests and moral	l							
		choice are analyzed; improving the anti-								
		corruption culture; actions in a conflict of								
		interest situation								
9	Fundamentals of	The discipline studies the basics of	5		v					
	Entrepreneurship and	entrepreneurship and leadership from the								
	Leadership	point of view of science and law; features,								
		problematic aspects and prospects of								
		development; theory and practice of								
		entrepreneurship as a system of economic,								
		organizational and legal relations of								
		business structures; readiness of								
		entrepreneurs for innovative receptivity.								
		The discipline reveals the content of								
		entrepreneurial activity, career stages,								
		qualities, competencies and responsibilities								
		of an entrepreneur, theoretical and	, 							
		practical business planning and economic								
		expertise of business ideas, as well as risk								
		analysis of innovative development,								
		introduction of new technologies and								
		technological solutions								
10	Ecology and life safety	The discipline studies the problems of	5			v				
10	Leology and me safety	ecology as a science, ecological terms, the	5			v				
		laws of the functioning of natural systems								
		and aspects of environmental safety in								
		working conditions. Environmental								
		monitoring and management in the field of								
		its safety. Sources of pollution of								
		atmospheric air, surface, groundwater, soil								
		and ways to solve environmental								
		problems; life safety in the technosphere;								
		natural and man-made emergencies								
		Cycle of b	Lagia diga	nling			I			
11	Mathematics I		ity compo		L.					
11	iviatnematics 1	The course is designed to study the basic	S		v					
		concepts of higher mathematics and its								
		applications. The main provisions of the								
		discipline are used in the study of all								

		general engineering and special disciplines						
		taught by graduate departments. The						
		course sections include elements of linear						
		algebra and analytical geometry, an						
		introduction to analysis, differential						
		calculus of a function of one and several						
		variables. The questions of methods for						
		solving systems of equations, the						
		application of vector calculus to solving						
		problems of geometry, mechanics, physics						
		are considered. Analytical geometry on the						
		plane and in space, differential calculus of						
		functions of one variable, derivative and						
		differentials, study of the behavior of						
		functions, Directional derivative and						
		gradient, extremum of a function of several						
		variables.				 		
12	Physics	· · · · · · · · · · · · · · · · · · ·	5	v				
		phenomena and laws of classical and						
		modern physics; methods of physical						
		research; the influence of physics as a						
		science on the development of technology;						
		the relationship of physics with other						
		sciences and its role in solving scientific						
		and technical problems of the specialty.						
		The course covers the following sections:						
		mechanics, mechanical harmonic waves,						
		fundamentals of molecular kinetic theory						
		and thermodynamics, electrostatics, direct						
		current, electromagnetism, geometric						
		optics, wave properties of light, laws of						
		thermal radiation, photoelectric effect						
13	Mathematics II		5	v				
		Mathematics 1. The course sections						
		include elements of linear algebra and						
		analytical geometry. The main issues of						
		linear algebra are considered: linear and						
		self-adjoint operators, quadratic forms,						
		linear programming. Differential calculus						
		of a function of several variables and its						
		applications. Multiple integrals. The theory						

		1			 				
		of determinants and matrices, linear							
		systems of equations, as well as elements							
		of vector algebra. The elements of							
		analytical geometry on the plane and in							
		space are included 5							
14	Engineering and computer	The anserptine is annea at the staaf of	5				v		
	graphics	methods for the image of objects and the							
		general rules of drawing, using computer							
		graphics; the study of the basic principles							
		and geometric modeling approach and							
		methodology for developing applications							
		with a graphical interface; the formation of							
		skills in the use of graphic systems for the							
		development of drawings, using 2D and							
		3D modeling methods							
15	Fundamentals of the specialty	The Discipline course is one of the elective	5					v	
		component disciplines that future							
		representatives of the mechanic's service							
		study. The course content allows future							
		mechanics to get an idea of such a							
		technically and technologically complex							
		industry. During the study, students will be							
		introduced to the technological processes							
		and the main equipment of the mining and							
		metallurgical and oil and gas industries,							
		operational and service industries of the							
		industry							
16	Training workshops	The course provides for the study of basic	4						
		methods related to repair, repair and							
		operation conditions of technological							
		equipment, repair quality requirements,							
		selection of necessary machinery and							
		equipment and materials. This discipline is							
		a course of choice for the training of							
		mechanics. As a result of mastering the							
		discipline, students gain practical skills in							
		maintenance and repair of components and							
		parts of technological equipment and apply							
		appropriate technical means and tools							
17	Theoretical and applied	Theoretical and applied mechanics	5						
	mechanics	includes courses such as theoretical							

	1			 	 			
1		mechanics, theory of mechanisms and						
1		machines. Theoretical mechanics deals						
		with the general laws of mechanical	1					
		movements of material bodies and	1					
		mechanical interactions between them. In	1					
		the theory of mechanisms and machines,	1					
		general methods of research, construction,	1					
		and kinematics of mechanisms and	1					
		machines are studied. We also strive to	1					
		involve students in the development and	1					
		solution of problems that contribute to	1					
		bridging the gap between scientific theory	1					
		and engineering practice.	1					
18	Fundamentals of hydraulics	The study of the course is aimed at	6					
	and hydraulic drives of	forming a complex of knowledge of the	1					
	technological machines	basic laws of hydraulics; the ability to	1					
	C C	apply these laws to solve practical	1					
		computational problems; possession of	1					
		standard hydraulic calculations and	1					
		methods of experimental research of	1					
		hydraulic systems.	1					
		Application of knowledge in the field of	1					
		technical fluid mechanics (hydraulics), for	1					
		the calculation of hydraulic pressure	1					
		systems, hydraulic machines, hydraulic	1					
		and pneumatic drives, widely used in	1					
		industry. Complete hydraulic calculation	1					
		of various hydraulic systems, hydraulic	1					
		and pneumatic equipment drives.	1					
		Obtaining the basics of knowledge in the	1					
		field of hydraulics – theoretical fluid	1					
		mechanics in the field of hydraulic drives	1					
19	Interchangeability,	Study of the basic laws and concepts of	5				v	
	standardization and technical	standardization and interchangeability,						
	measurements	methods and means of controlling shape						
1		deviations, roughness and undulation of						
1		surfaces of parts, the role of						
1		standardization in improving the quality of						
		machines. The course links the design,						
			1 '					
		production technology and control of						

		1		1				
		Standardization and unification of parts						
		and elements contribute to speeding up and						
		reducing the cost of designing and						
		manufacturing products.						
20	Structural materials of	The solution of the most important	5					
	technological machines and	technical problems associated with the						
	equipment	creation and development of new most						
		economical materials, increasing the						
		accuracy, reliability and operability of						
		mechanisms and devices largely depends						
		on the development of materials science						
		and technology for obtaining and						
		processing materials, concretization of						
		knowledge about the relationship of						
		composition, structure and properties of						
		materials used to control the structure and						
		properties of structural materials.						
21	Strength of materials	Stretching and compression. Stresses in	5				v	
	_	cross sections and deformations of a						
		straight rod. Mechanical properties of						
		materials under tension and compression.						
		Calculation of strength and stiffness in						
		tension-compression. Geometric						
		characteristics of flat sections. Shear and						
		torsion. Calculation of strength and						
		torsional stiffness. Bend. Normal and						
		tangential bending stresses. Calculation of						
		bending strength. Theory of stressed and						
		deformed states. The limit state hypothesis.						
		Complex resistance. Stability of the						
		equilibrium of deformable systems.						
		Dynamic load.						
22	Thermodynamics, heat	8,	5					
	transfer and heat engineering	converting, transferring and using heat,						
	equipment	which makes it possible to save fuel and						
		energy resources during the operation of						
		technological machines and equipment, to						
		intensify technological processes, to						
		identify and use thermal energy resources						
23	Industrial economics	The purpose of mastering the discipline is	5		v			
		the formation of knowledge of the complex						

	1			 	 1	,	 		
		solution of economic problems of the							
		development of economic activity of							
		industrial enterprises, the acquisition of the							
		ability to independently understand the							
		changing market conditions. The economic							
		aspects of product quality, investments,							
		fixed and working capital of the enterprise,							
		personnel, labor productivity, wages are							
		studied. The main technical and economic							
		indicators of production, assessment and							
		analysis of the economic activity of the							
		enterprise							
24	Bases of designing and details	The purpose of the discipline: formation of	5	-			v		
- ·	of cars	knowledge of the basics of theory,	c				•		
		calculation and design of machine parts							
		and assemblies. The general principles of							
		design and construction, construction of							
		models and calculation algorithms for							
		typical machine parts, taking into account							
		the performance criteria, are considered.							
		The types of failures of machine parts, the							
		concept of reliability and its main							
		indicators, the basics of the theory and							
		methods of calculating typical machine							
		parts, computer technologies for designing							
		components and machine parts are studied.							
		Basic requirements for machine parts and							
		assemblies.							
25	Electrical en sin series and		5						
25	Electrical engineering and microelectronics	Electrical and magnetic circuits. Basic	5					v	
	microelectronics	definitions, parameters and methods of							
		calculation of DC electrical circuits.							
		Analysis and calculation of linear AC							
		circuits. Analysis and calculation of							
		electrical circuits with nonlinear elements.							
		Analysis and calculation of magnetic							
		circuits. Electromagnetic devices and							
		electrical machines. Fundamentals of							
		electronics and electrical measurements.							
		The element base of modern electronic							
		devices. Semiconductor elements.							
		Electronic equipment power supply							

	1		1			 		 	,,
		devices. Amplifiers of electrical signals.							, I
		Electronic amplifiers and generators.							, I
		Elements of pulse technology. Pulse and							
		auto-generator devices. Fundamentals of							
		digital and microelectronics.							1
		Microprocessor tools							1
26	Labor protection	The purpose of the discipline is to form	5	,	v		v		
	1	knowledge of legislative acts and norms							1
		aimed at ensuring occupational safety. In							1
		the discipline, students study legal and							1
		regulatory documents on labor protection							1
		(OT), occupational hygiene and industrial							1
		sanitation. Dangerous and harmful							1
		production factors, safety measures during							1
		installation and operation of technological							1
		equipment, emergency situations and							1
		elimination of their consequences are							1
		considered. In the discipline, they study the							1
		basics of OT management, rationing,							1
		methods of assessing and forecasting OT,							1
		methods of monitoring and auditing OT,							1
27	Dynamics and strength of	The course is designed to study the basic	4						
27	technological machines	methods of calculating the strength of parts	+						1
	teennological machines	and assemblies of technological machines							1
		and equipment. The main strength models							1
		are considered in detail, in particular,							1
		methods of finite element modeling,							1
		methods for constructing stiffness							1
		matrices, displacements and deformations.							1
		A special place is occupied by the basics of							1
		calculating stresses and deformations when							1
									1
		assessing strength, using various strength							1
		theories and methods of calculating the							1
		strength of simple and complex structures							1
		with the determination of internal forces							1
		during static calculation and the output to							1
20		determine geometric parameters	~						
28	Reliability of technological	The course provides students with	5						1
	machines	knowledge and skills that provide a							1
		creative approach to solving problems of							1
		reliability and durability of technological							L

				 		1	 T	
		machines and equipment necessary to						
		increase the level of automation, reduce						
		huge repair costs from machine downtime,						
		and ensure safety during equipment						
		operation. When studying disciplines,						
		students master the issues of ensuring the						
		reliability and durability of technological						
		equipment; principles of rational use of						
		technical parameters of technological						
		machines.						
		Cycle of ba						
		Componen	ce					
29	Drilling machines and	Designs of equipment for drilling wells for 5				v	v	
	complexes	the purpose of oil and gas production the						
		device and the main directions of further						
		development of drilling machines and						
		complexes in accordance with the trends of						
		world technological progress. Evaluation						
		of the effectiveness of machines and						
		equipment for choosing a rational way of						
		their operation. Technical level, ways to						
		improve the design, methods of operation						
		of drilling machines and complexes.						
30	Technological lines and	The course provides students with the 5			v			v
	complexes of metallurgical	necessary knowledge about the scale of						
	production	metallurgical production and the continuity						
		of its constituent processes, patterns of						
		construction and trends in the development						
		of technological lines of metallurgical						
		production, necessary for production,						
		design and research activities.						
		Mastering by students of technologies for						
		obtaining various metals, starting with						
		enrichment and ending with metalworking						
		processes by pressure, the structure of						
		existing technological lines and complexes						
		of metallurgical workshops and prospects						
		for the development of metallurgical						
		production, the principle of choosing						
		machines and mechanisms, determining						
		the required number of them for lines and						

		complexes of metallurgical workshops							
31	Mining technology	Prospects for the development of underground mining of mineral deposits. Mining and geological characteristics of mineral deposits. Basic information about mining operations in the underground development of the deposit. The order and methods of ore extraction and the sequence of mining blocks. The main indicators of ore extraction. Losses and dilution of ore. Concepts of a mine field, a mine. Stages of mine fields development. Autopsy requirements	5				v	v	
32	Technological processes in the oil and gas industry	About Training bachelors in well construction technology, well oil production, scientific understanding of the main technological processes and works in the oil and gas industry. Methods of opening productive objects; the call of inflow and development of wells; the choice of methods of impact on the productive reservoir; the choice of methods of impact on the bottom–hole zone of the well; methods of well operation; calculation of operating modes of the "well-formation" system.	5				v	v	
33	Internal combustion engines	Thermodynamic cycles of internal combustion engines. Internal combustion engine designs used in the oil and gas industry, the theory of working processes, principles of their operation, basic concepts and definitions, technical and economic indicators, engine system designs, rules for their technical operation, maintenance and repair. Processes of compression, combustion and expansion. Calculation of the parameters of the working mixture in these processes	5				v	v	
34	Pumps, fans, compressors	The device of technologically important and large energy consumers in industry: pumps, fans and compressors of various	5						

		1	1						
		types, parameters, effective modes of their							
		operation. The methods of designing and							
		installing pumping stations, fan							
		installations of the main ventilation are							
		practically mastered. Pipeline networks,							
		their design and installation, auxiliary							
		equipment ensuring efficient and safe							
		operation of pumping, fan and compressor							
		units are being studied.							
35	Transport and auxiliary	General information about mechanical	5			v			
	equipment of metallurgical	transport equipment of non-ferrous							
	workshops	metallurgy plants. Equipment of							
	I I	warehouses of bulk charge materials. The							
		device and designs of car dumpers.							
		Bunkers and their closures. Feeder designs.							
		Equipment maintenance techniques							
		depending on its type and purpose. The							
		main parameters of the mechanical mode.							
		Purpose, device, principle of operation and							
		features of operation of technological							
		equipment of pyro- and hydrometallurgical							
		productions							
36	Gas pumping units	The main features and current state of	5			v	-		
		natural gas pipeline transport. Modes and							
		performance indicators of gas pumping							
		units at compressor stations. Features of							
		properties and aerodynamics of flows into							
		gas pumping units. Types of centrifugal							
		superchargers used in the gas industry.							
		Designs and characteristics of the CBN of							
		natural gas. Methods for determining the							
		technical condition and power							
		consumption of gas pumping units with							
		power drive.							
37	Calculation and design of	The concept of the essence and purpose of	6					v	
	technological machines and	the mechanism. General principles of							
	equipment	design of technological equipment.							
		Kinematic schemes of technological							
		machines and equipment, methods of							
		obtaining new technical solutions in the							
		design, design of gearbox housing parts;							

r	I			1	1 1	 	1	1	1	
		standard calculation of mechanical gears,								
		design of the main elements of mechanical								
		gears, including using computer-aided								
		design methods								
38	Computer-aided design	The organization of the process of	6						v	
	systems for technological	designing engineering objects, the basic								
	machines	principles of construction and structure of								
		computer-aided design systems, the								
		composition and types of support for								
		computer-aided design systems, analysis of								
		the work processes of technological								
		machines using computers, elements of								
		computer-aided design systems of								
		technological machines. Structure and								
		classification of computer-aided design								
		systems, with various types of computer-								
		aided design systems support								
39	Computer technologies of	The course is aimed at students learning	6			v				
	calculation, modeling and	the basics of modeling technological								
	design	machines and equipment, to gain practical								
		skills of working with computer graphics								
		in the process of designing parts and								
		assemblies, to form knowledge about								
		trends in the development of computer								
		graphics, to form a professional student's								
		consciousness. When studying the								
		discipline, students receive: practical skills								
		of working with modern graphic computer								
		graphics programs; master the methods of								
		using computer graphics in the tasks of the								
		discipline; knowledge of the theoretical								
		foundations of the finite element method;								
		obtaining skills in analyzing the results of								
		computer modeling and design;								
		fundamentals of system and automated								
		modeling and design of technical objects;								
		classification, technical characteristics and								
		capabilities of various computer design								
		systems and database management systems		L						
		Cycle of p		-						
		Universi	ty compo	onent						

40		XX7	5	I		 г	——
40	Repair of technological	Wear and aging of technological machines	5		v	v	
	machines	and equipment. Design of repair					
		production. Organization and management					
		of the electromechanical service. Basic					
		information on the methods of repair,					
		improvement of technological equipment.					
		Engineering support of repair. To identify					
		defects in the components of machines and					
		aggregates, to instill in students the					
		practical skills necessary for the repair and					
		operation of mining and metallurgical					
		production equipment. Technologies for					
		restoring worn parts					
41	Control and measuring		5		v	v	
	devices and automation of	knowledge of the design of devices, their					
	technological machines	purpose and principles of operation. As					
	C C	well as special training of engineering and					
		technical personnel with scientific and					
		practical knowledge in the field of					
		operation, as it solves current engineering					
		and scientific problems in the field of					
		quality, operational properties and rational					
		use of fuels, oils, lubricants and technical					
		fluids.					
42	Installation and operation of	The course is aimed at familiarizing	6		v	v	
	technological machines	students with modern methods and forms	-				
		of organization of installation work,					
		technology of assembly of components					
		during assembly, alignment of equipment					
		during installation on the foundation,					
		adjustment of standardized units, running-					
		in, testing and operation of aggregates,					
		lubricants, lubrication systems, lubrication					
		fittings and regeneration of lubricants. The					
		main task of studying the discipline is to					
		gain knowledge on the organization and					
		engineering support of high-quality					
		operation and installation of metallurgical					
		equipment, instilling in students practical					
		skills necessary for the operation and					
		installation of technological machines.					

	1	1		1	 			r		
43		Electric arc welding and cutting, as well as	4			V	r			
		other types of welding are widely used in								
		the metallurgical industry. It is enough to								
		master materials, machines and								
		apparatuses, mechanization and								
		automation of the welding process well								
		and deeply. When installing metallurgical								
		equipment, repairing machine parts, laying								
		pipes, manufacturing metal structures,								
		welding and thermal cutting are one of the								
		main technological processes								
		Cycle of p	ofile disc	plines						
			nent of ch	-						
44	Transport vehicles	1 *	5			V	r			
	-	vehicles. Technological schemes of								
		transport. Fundamentals of calculation of								
		transport vehicles. Railway transport.								
		Automated design system for electric								
		locomotive transport. Self-propelled								
		transport. Scraper installations. Conveyor								
		installations. Pneumatic and hydraulic								
		transport installations. Pipeline container								
		pneumatic transport installations.								
		Mechanization of loading and unloading								
		and installation works. Transport on the								
		surface of mines and mines. Technological								
		complex of the surface. Constructions of								
		transport vehicles								
45	Hydraulic machines and	Acquisition of solid theoretical and	5					,	v	
	compressors in the oil and gas	practical knowledge on the designs and								
	industry	principles of operation of hydraulic								
		machines, compressors, widely used in the								
		transportation of oil, petroleum products								
		and gas through pipelines. General								
		diagrams of devices of hydraulic machines								
		and compressors. The principle of								
		operation of volumetric, flowing machines.								
		Varieties of hydraulic and compressor								
		machines. Theories of action and								
		characteristics. Areas, features of								
		application, regulation of operating modes								

			-	1	,		1	r	1	
46	Ore preparation equipment	The course is aimed at training specialists	5			v				
		in the field of operation of technological								
		equipment for the preparation of ore raw								
		materials, possessing a system of								
		theoretical and practical knowledge,								
		equipment and technology of the ore								
		preparation process, having an idea								
		of the purpose and role of preparatory								
		processes in the enrichment								
		of minerals, methods of calculation of								
		technological equipment, selection and								
		technical and economic indicators of								
		equipment, purpose, device, operation and								
		operating conditions, as well as the basics								
		of calculating ore preparation machines								
		and equipment								
47	Non-standard equipment	Preparation of bachelors for independent	4						v	v
		production and technical activities at								
		enterprises for the production and repair of								
		technological equipment based on the								
		development of theoretical and practical								
		material for the design of non-standard								
		equipment, the study of the basics of the								
		design of technical objects, the acquisition								
		of practical skills in the design of special								
		technological equipment								
48	Technical diagnostics of	The course is aimed at studying the	4						v	v
	technological equipment	theoretical foundations of technical								
		diagnostics and obtaining practical skills in								
		the use of non-destructive testing methods								
		to assess the technical condition of								
		technological machines and equipment; to								
		familiarize students with the basics of the								
		theory of technical diagnostics, types of								
		technical condition, controlled parameters,								
		technical diagnostics systems; to study the								
		physical foundations of non-destructive								
		testing methods for detecting and								
		diagnosing malfunctions of technological								
		equipment; familiarization with equipment								
		for non-destructive testing, test methods,								
		por non-acondenve testing, test methods,	l					L		

				T		1		T		
		acquisition of practical skills								
49	Friction and wear	Patterns of external friction and wear of rough surfaces, modern friction theories, methods for determining friction coefficients, calculating and predicting the intensity of wear; types, mechanism of abrasive wear; the value of lubricants and additives during friction and wear, methods of selecting materials for rubbing parts, methods of increasing wear resistance, equipment used for research of friction and wear, directions of development.	6		v					
50	Lubrication of technological machines	The course is aimed at training specialists for production, design and research activities in the field of creation, improvement of lubrication systems and equipment, maintenance, modernization of technological equipment. The course covers: operational properties of technological machines; operational properties of elements of technological machines exposed to temperature, corrosion; lubrication of technological equipment; lubricating oils; additives to lubricating oils; greases; selection, supply and methods of calculating lubricant consumption	6						v	
51	Fuels, oils and special fluids	Types of organic fuels, lubricants and technical liquids, their purpose and basic properties. As well as special training of engineering and technical personnel with scientific and practical knowledge in the field of chemmotology, because it solves current engineering and scientific problems in the field of quality, operational properties and rational use of fuels, oils, lubricants and technical fluids.	6				v			
52	Theory and practice of project management	The discipline is aimed at studying the general trends of project management in market conditions in order to increase	5							

-	1	l de la constante de		1	 				
		productivity in the professional industry.							
		The essence, concept, composition, tasks							
		and problems of management. Study of the							
		scientific methodology of project							
		management. The concept of organization,							
		the external and internal environment of							
		the team, communication. Requirements							
		for project management. The role of							
		decision-making in project management.							
		The concept of anti-crisis programs in the							
		performance of managerial functions. The							
		concept of management culture and							
		professional etiquette							
		The study of the discipline forms students'	5				v	,	v
	repair of compressor units and	ideas about the basics of installation of							
	hydraulic machines	compressor units and hydraulic machines,							
		about the organization of the operation							
		system, factors affecting operating							
		conditions, as well as about modern							
		technologies to improve operational							
		reliability. When studying the discipline,							
		the following are considered: general							
		methods of installation of compressor							
		stations; installation of technological							
		equipment of a gas turbine shop;							
		installation of equipment of gas engine							
		shops; installation of auxiliary							
		technological equipment							
54	Melting processing equipment	Training of specialists for production,	5			v		,	v
		design and research activities in the field							
		of creation, improvement and operation of							
		mechanical equipment for smelting							
		processing of the metallurgical cycle with							
		knowledge of the scientific principles of							
		the organization of technological design.							
		As a result of studying the discipline,							
		students master advanced methods of							
		operation of mechanical equipment, the							
		current state and prospects for the							
		development of metallurgical production;							
		the main scientific and technical problems							

			1	1			r	r		
		of operation of technological equipment of								
		metallurgical enterprises.								
55	Oil and gas field machines	The design of the borehole completed by	5						v	
	and mechanisms	drilling. Aggregates of capital and routine								
		well repairs. Equipment and tools for								
		capital and routine well repairs. Equipment								
		of wells for various ways of influencing								
		the formation in order to increase its oil								
		recovery. Well production collection and								
		preparation system. Equipment for								
		maintaining reservoir pressure and								
		displacing oil from productive reservoirs								
56	Machinery and equipment of	Purpose and classification of gas and oil	5		v					
	gas and oil pipelines	pipeline equipment. Equipment of								
		pumping stations for the transportation of								
		oil and petroleum products. Equipment of								
		compressor stations for transportation of								
		natural gases. Shut-off and control valves								
		and equipment of oil pipelines.								
		Technological scheme of strapping								
		equipment of pumping and compressor								
		stations. Automation and control of								
		pumping and compressor stations								
		equipment.								
57	Drainage, fan and pneumatic	The device of technologically important	5		v					
	installations	and large energy consumers in the mining								
		industry: pumps, fans and compressors of								
		various types, the main parameters and								
		scope of application of these installations.								
		Methods of design and installation of								
		pumping stations, fan installations of the								
		main ventilation. Pipeline networks, their								
		arrangement and installation, auxiliary								
		equipment ensuring efficient and safe								
		operation of pumping, fan and compressor								
		units								
58	Dust and gas cleaning and	Studying the course gives students an idea	5			v				v
1	recycling water supply of	of modern systems of dust and gas								
1	industrial enterprises	cleaning and recycling water supply of								
1	······································	industrial enterprises. Contains basic								
		information about the features of water								
L		miormation about the reatures of water	l	1						

		supply of industrial enterprises. The							
		systems and schemes of industrial water							
		supply, methods and technologies of water							
		treatment are considered, data on the							
		design of installations for cooling recycled							
		water and improving its quality, preventing							
		suspension deposits and biological fouling,							
		scale formation and corrosion in pipelines							
		and equipment are contained.							
59	Well overhaul equipment and	Principles of operation and device;	5				v		
		fundamentals of their theory of calculation,							
		design and operation. Principles of							
		economic operation of modern equipment							
		for major well repairs. Equipment used in							
		the overhaul of wells. Equipment for repair							
		work on the well. Equipment for collecting							
		and preparing oil and gas for							
		transportation. Modern methods of							
		environmental protection during the							
		overhaul of wells.							
60	Equipment and technology of	Equipment and tools for the overhaul of	5				v		
	well overhaul	wells; technology for the overhaul of wells							
		operating conditions and repairs; their							
		principles of operation and device; the							
		basics of their theory of calculation, design							
		and operation. New technological							
		techniques and technical means of repair.							
		Principles of economic operation of							
		modern well overhaul equipment;							
		equipment used in various methods of oil							
		and gas production							
61	Fundamentals of design of	The course is aimed at students acquiring	5		1	v			
	repair enterprises in the	theoretical knowledge and practical skills							
	industry	on the basics of design and reconstruction							
	-	of repair enterprises of technical service of							
		the industrial complex. Objectives of the							
		discipline: study of the rules for designing							
		technical service facilities of an industrial							
		complex, substantiation of the production							
		complex, substantiation of the production							
		program of a service enterprise, design of							

								-	
		basics of designing a construction part,							
		design features of repair shops, technical							
		and economic evaluation of design							
		solutions							
62	Calculation and design of		5		v	v			v
	drilling equipment	machines and complexes that provide							
		drilling of deep wells for oil and gas							
		extraction from the Earth's interior. The							
		program is focused on the training of a							
		mechanical engineer and is aimed at an in-							
		depth study of the physical foundations of							
		the operation of drilling machines and							
		equipment, as well as the design of new							
		drilling equipment based on existing ones							
		developed by world firms, the objectives							
		of studying the discipline is to acquire in-							
		depth knowledge in the field of							
		professional activity							
63	Calculation and design of oil	Questions of theory and practice of	5		v	v			v
	and gas field equipment	designing machines and mechanisms, the							
		peculiarity of designing typical types of							
		oilfield equipment; optimization of							
		equipment design using computer-aided							
		design systems. Designing machines for							
		the oil and gas industry is the basis for the							
		development of this industry, contributes							
		to the development of design skills. Basic							
		design techniques for the development of							
		parametric series of equipment for oil and							
		gas production							
64	Design of metallurgical	Training and preparation of specialists for	5		v	v			v
	machines	production and research activities in the							
		field of design of design developments and							
		obtaining practical skills in designing							
		typical and specific elements and							
		assemblies of metallurgical machines using							
		modern regulatory and technical							
		documentation. This is due to the							
		predominant use of specialists in industry							
		as middle-level engineering and technical							
1		workers engaged in the creation, operation							

								1	
		and repair of modern metallurgical							
		machinery units.							
65	Construction of mining and	Basic principles, methods of construction	5		v	v			v
	transport machines and	of mining machines and stationary							
	stationary installations	installations design manufacturability.							
		Indicators of the manufacturability of the							
		design. Necessary documents and their							
		registration. Establishment of rational							
		design parameters of mining machines and							
		stationary installations. Basic principles							
		and methods of designing technological							
		machines. Principles of calculation of							
		design parameters. Construction of							
		assembly units and machine parts. Design							
		of GM and SU structures							
66	Fundamentals of energy	To form an idea of the general principles	5				v	v	
	saving industry	of developing an energy survey strategy,							
		the modern regulatory framework for							
		energy efficiency, methods for determining							
		regulatory and prospective indicators of							
		energy efficiency, methods for confirming							
		energy efficiency indicators and							
		compliance with their regulatory values,							
		modern and promising science-based							
		technologies for energy conservation,							
		control and improvement of energy							
		quality, including the use of renewable							
		energy sources							
67	Equipment 3-5 converted	Classification of working stands and	5		v				v
		rolling mills. Parameters of the rolling							
		process. Calculation of rolling force.							
		Rolling moment and power. Determination							
		of the power of the electric drive. Working							
		crates. Bearings and cushions of rolling							
		rolls. Mechanisms and devices for							
		installing and balancing rolls. The frames							
		of the working crates. Drive of rolls of							
		working stands. Gear crates. Bullion							
		trucks. Continuous hot and cold Rolling							
		mills							
68	Energy-saving equipment and	Basic terms and definitions of energy	5				v	v	

	. 1 1 1 . 1 1							1	1
		as conservation. Energy saving in the oil and							
	industry	gas industries. The main directions of the							
		use of VER. Prospects for the development							
		of the use of unconventional energy							
		sources. Energy-saving measures in the							
		technology of the oil and gas industry. The							
		use of heat pump installations in the							
		systems of the gas and oil industry.							
		Utilization and use of VER gas turbine							
		units at compressor stations of main gas							
		pipelines							
69	Lifting installations	Purpose and general arrangement of lifting	5			v		v	
		equipment for the transportation of people;							
		cargo, minerals and waste rock. The							
		purpose and designs of lifting vessels of							
		various types, the scope of their							
		application are studied. Information and							
		methods of calculation and selection of							
		ropes, lifting machines, copers. The							
		method of calculating the elements of the							
		kinematic and dynamic mode of operation							
		of the lifting installation, the choice of							
		electric drive and energy consumption							
70	Fundamentals of scientific	Methodological foundations of scientific	5	v			v		
	research and development	knowledge. Knowledge of basic and							
	work	technological aspects, theoretical							
		provisions, technologies, operations,							
		practical methods and techniques of							
		conducting scientific research based on							
		modern achievements of domestic and							
		foreign scientists and to master the skills of							
		choosing the topic of scientific research,							
		scientific search, analysis,							
		experimentation, data processing,							
71	Technique of full-scale		5	v			v	1	
-	-		-	ľ					
71	Technique of full-scale experiment	 experimentation, data processing, obtaining sound effective solutions using information technology The purpose of the study: to give students the knowledge necessary for further production, activity about the essence and methodology of scientific research, hardware design of a full-scale experiment 	5	v			v		

-		1							
		Expected results: The student will be able							
		to independently prepare the equipment for							
		tensometric studies. Connect the							
		assembled circuit and perform calibration							
		using a calibration beam							
72	Methods and means of testing	The development of the discipline is aimed	5	1	v			v	
		at acquiring knowledge and skills for the							
		selection, creation, implementation and							
		operation of measuring installations and							
		systems, test benches; knowledge of							
		methods and measuring instruments;							
		metrological characteristics of measuring							
		instruments; organization of testing and							
		control activities in order to assess the							
		conformity of products and quality							
		indicators							

5. Curriculum of educational program

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATPAYEV

Ŝ	SATBAYEV UNIVERSITY
୭	UNIVERSITY

CURRICULUM of Educational Program on enrollment for 2023-2024 academic year

Educational program 6B07115 - Technological machines and equipment (by industry) Group of educational programs B064 - "Mechanics and metal working"

	Form of study: full-time	Duration of	study: 4	vears				Academic	degree: F	Bachelor (of Enginee	ering and	Technolo	av	
	Name of disciplines	Cycle	Total	Total	classroom	SIS	Form of				ace trainin				ers
Discipline		1000000000	amount	hours	volume of		control		urse		ourse		ourse		ourse
code			in credits		lek/lab/pr	g TSIS) in hours		1 semester	2 semester	3 semester	4 semester	5semeste r	6 semester	7	8 semester
CYCLE	DF GENERAL EDUCATION I	DISCIPLIN	ES (GED))											
	Decision and the second se			M-1	. Module	of langu	age train	ing							
LNG108	English language	GED, RC	10	300	0/0/6	210	E	5	5						
LNG104	Kazakh (Russian) language	GED, RC	10	300	0/0/6	210	E	5	5						
				M-:	2. Module	of physi	cal traini	ing							
KFK101- 104	Physical Culture	GED, RC	8	240	0/0/8	120	Difcredit	2	2	2	2				
11/4				M-3 A	Aodule of	informat	ion tech	ology							
CSE 677	Information and communication technologies (in English)	GED, RC	5	150	2/1/0	105	E	lology			5				
				M-4. M	dule of so	cio-cultu	ral deve	onment							
HUM137	History of Kazakhstan	GED, RC	5	150	1/0/2	105	SE	pinent	5						
HUM 132	Philosophy	GED, RC	5	150	1/0/2	105	E	-			5				
HUM 120	Socio-political knowledge module (sociology, politology)	GED, RC	3	90	1/0/1	60	Е				3				
HUM 134	Socio-political knowledge module	GED, KC	5	150	2/0/1	105	Е			5					
	(culturology, psychology)			0000											
	Fundamentals of anti-corruption	M-:	5. Module	e of anti-	-corruptio	n culture	e, ecology	and life	safety ba	ase					
HUM136	culture and law														
MNG489	Fundamentals of Economics and	1													
MING489	Entrepreneurship	GED, CCH	5	150	2/0/1	105	Е			5					
MSM500	Fundamentals of scientific research methods														
CHE656	Ecology and life safety														
	OF BASIC DISCIPLINES (BD)				I				L						
CICLE	ST DASIC DISCH LINES (BD)	/	MG	Module	e of physic	alandm	athemat	iaol teolo	Inc						
MAT 101	Mathematics I	BD, UC	5	150	1/0/2	105	E	5	ling						
PHY468	Physics	BD, UC	5	150	1/1/1	105	E	5		-					
MAT 102	Mathematics II	BD, UC	5	150	1/0/2	105	E		5						
				M	I-7. Modu	le of basi	ic trainin	g					_		
				Gen	ieral techr	nical trai	ning mod	lule							
GEN 429	Engineering and computer graphics	BD, UC	5	150	1/1/1	105	E	5							
TEC571	Training workshops	BD, UC	4	120	0/0/3	75	E		4						
TEC549 GEN411	Fundamentals of the specialty Theoretical and applied mechanics	BD, UC BD, UC	5	150 150	2/0/1 2/1/0	105	E	5		5					
TEC563	Basics of hydraulics and hydraulic drives of technological machines	BD, UC	6	180	2/0/2	103	E			,	6				
TEC463	Interchangeability, standardization	BD, UC	5	150	2/0/1	105	E			5					
TEC460	and technical measurements Construction materials processing	BD, UC	5	150	2/1/0	105	Е		-	5					
	machinery and equipment									-					
GEN408	Strength of materials	BD, UC	5	150	1/1/1	105	E				5				
PED436	Thermodynamics, heat transfer and heat engineering equipment	BD, UC	5	150	2/0/1	105	E					5			
NSE143	Industrial economics	BD, CCH	5	150	2/0/1	105	E				5				
GEN125	Bases of designing and details of cars		5	150	1/1/1	105	E					5			
ELC103	Electrotechnics and Microelectronics	BD, UC	5	150	2/1/0	105	E			-		5			
SAF110	Labor protection	BD, UC	5	150	2/0/1	105	E	-	-			5			-
TEC555	The dynamics and durability of technological machines	BD, UC	4	120	2/0/1	75	E					4			
3218	Elective	BD, CCH	5	150	2/0/1	105	E					5			
TEC401	Reliability of technological machines	BD, UC	5	150	2/0/1	105	E	-					5		
3220	Elective	BD, CCH	5	150	2/0/1	105	E						5		
3221	Elective	BD, CCH	5	150	2/0/1	105	E						5		
4222	Elective	BD, CCH	6	180	1/0/3	120	E				1			6	
AAP179	Educational practice	BD, UC	2						2						-
CYCLE	OF PROFILE DISCIPLINES (PD)		_						_					
					Module										
[Louis action called and the				nology ar	1	-	dule							
TEC459	Repair of technological machines	PD, UC	5	150	2/0/1	105	E							5	
PED193	Instrumentation and automation of technological machines	PD, UC	5	150	2/0/1	105	E							5	
TEC559	Installation and exploitation of technological machines	PD, UC	6	180	2/0/2	120	E		-					6	
TEC566	Metall welding and ccutting	PD, UC	4	120	2/1/0	75	E						4		
3302	Elective	PD, CCH	5	150	2/0/1	105	E	-					5		-
3303 4307	Elective	PD, CCH	4	120	2/0/1	75	E				-		4	-	
	Literive	PD, CCH	0	160	2/1/1	120	E		1	10		12		6	1

								60		60		60		60	
	Total based on UNIVERSITY	<i>(</i> :						32	28	27	33	29	31	33	27
AAP500	Military affairs	ATT	0										1		
	*			M-10. M	odule of a	dditional	types of t	raining				110			
ECA108	Final attestation	FA	8												8
_				M	9. Module	e of final	attestatio	n							
AAP183	Production practice II	PD, UC	3										3		
AAP143	Production practice I	PD, UC	2								2				
TEC570	Technical diagnostics of technological equipment	PD, UC	4	120	2/0/1	75	Э								4
311	Elective	PD, CCH	5	150	2/0/1	105	E								5
4310	Elective	PD, CCH	5	150	2/0/1	105	E								5
1309	Elective	PD, CCH	5	150	2/0/1	105	E								5
308	Elective	PD, CCH	5	150	2/0/1	105	E							5	

	Cycles of disciplines	eriod of study Credits				
Cycle code		required component (RC)	university component (UC)	component of choice (CCH)	Total	
GED	Cycle of general education disciplines	51	5		56	
BD	Cycle of basic disciplines		91	21	112	
PD	Cycle of profile disciplines		29	35	64	
	Total for theoretical training:	51	125	56	232	
FA	Final attestation	8			8	
	TOTAL:	59	125	56	240	

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol No for "24" 11 2024.

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol Na 3 or "17" 11 20 22.

Decision of the Academic Council of the Institute E&ME. Protocol Na for "11 " 10 20 1

Vice-Rector for Academic Affairs

Director of Institute of E&ME

Head of department TM&T

Representative of the Council from employers

IE. Protocol Ne for "IL" 10 20 Lly	
Strac	B.A.Zhautikov
- tay	K.K. Yelemessov
Car	S.A. Bortebayev
- m	M.A. Kanatbayev

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY after K. SATBANEV

MAJOR ELECTIVE DISCIPLINES educational program for the 2023 2024 academic year admission Educational program6B07115 - Technological machines and equipment (by industry) Group of Educational programs B064 - "Mechanics and metal working"

Year of study	Code of elective	Code of discipline	Name of discipline	Semestr	Cycle	Credits	Total hours	lec/lab/pr	(including SIWT) in
			M-7. Module of basic train					-	
		TEC485	General technical training me Drilling machines and complexes	odule				2/0/1	
- 20	3220	PED137	Technological lines and complexes of metallurgical production	- 1	BD	5	150	Cold States of Cold	105
		MIN173		6				2/0/1	
		TEC471	Mining technology	-				1/0/2	
3			Technological processes in the oil and gas industry					2/0/1	
		TEC469	Pumps, fans, compressors		BD	5	150	2/0/1	105
	3221	TEC476	Organization of machine-building production in the industry	6				2/0/1	
	- Ar 4 1	PED175	Auxiliary transport equipment of metallurgical shops					2/0/1	
		TEC477	Gas-pumping units	-				2/0/1	
		TEC552	Computer-aided design of technological machines	-	BD	6	180	1/0/3	120
4	4222	TEC550	Computer technologies for calculation, modeling and design	7				1/0/3	
	1.200	TEC551	Calculation and design of technological machines and equipment					1/0/3	
			M-8. Module of professional a	ctivity					
			Technology and Operations M						
		TEC466	Transportation vehicles					2/0/1	105
	3302	TEC127	Hydraulic machines and compressors in the oil and gas industry	6	PD	5	150	2/0/1	
3		TEC484	Equipment for ore preparation					2/0/1	
	3303	TEC574	Non-standard equipment	- 6	PD	4	120	2/0/1	75
		TEC576	Design of experiments bench and field tests	0	10		120	2/0/1	
	4307	TEC572	Friction and wear	7	PD		180	2/1/1	120
		TEC567	Lubrication of technological machines			6		2/1/1	
		TEC568	Fuels, oils and special liquids					2/1/1	
		PED130	Technology maintenance and repair of compressor units and hydraulic machines	7	PD			2/0/1	105
	4308	TEC455	Melting processing equipmen			5	150	2/0/1	
	4308	TEC479	Oil and gas field machines and mechanisms					2/0/1	
		TEC106	Machines and equipment for gas and oil pipelines					2/0/1	
		NSE185	Theory and practice of project management					2/0/1	
		PED431	Dewatering, fan and pneumatic plants	8				2/0/1	105
4	4309	PED118	Dust-gas cleaning and recycling water supply of industrial enterprises		8 PD	PD 5	150	2/1/0	
91.0		PED157	Well overhaul equipment and installations					2/0/1	
		PED454	Engineering and well workover technology					2/0/1	
		TEC418	Fundamentals of design of repair enterprises in the industry	8	8 PD	.G	150	2/0/1	105
	4310	PED170	Calculation and design of drilling equipment					2/0/1	
		PED155	Calculation and design of oil and gas equipment			5		2/0/1	
		PED177	Projection of metallurgical machines					2/0/1	
		PED421	Construction of mining transport vehicles and fixed installations					2/0/1	
	4311	TEC548	Fundamentals of energy saving industry	8	PD	5	150	2/0/1	105
		TEC110	Equipment 3-5 redistribution					2/0/1	
		PED456	Energy-saving equipment and technologies in the oil and gas industry					2/0/1	
		TEC114	Lifting installations					2/0/1	
			Module"R&D"						
3	3218	PED445	Fundamentals of Research and Development	5	BD	5	150	2/0/1	105
		PED430	Technique of field experiment					2/0/1	
		TEC436	Methods and means of testing technological machines					2/1/0	

Credits numbers of elective disciplines over the entire period of study				
Cycle of disciplines	Credits			
Cycle of basic disciplines (B)	21			
Cycle of special disciplines (S)	35			
Overall:	56			

Decision of the Academic Council of the Institute E&ME. Protocol № Lor "11 " 10 202 Ly.

Head of the department TM&T

ast of

S.A. Bortebayev M.A. Kanatbayev

Representative of the Council from employers

Name of additional educational programs (Minor) with disciplines	Total number of credits	Recommended semesters of study	Documents on the results of mastering the additional educational programs (Minor)

6. Additional educational programs (Minor)